

Rerport no. 1705001

Performed 30.05.2017

File Sample.exe

Size 275456

MD5 8b6d824619e993f74973eedfaf18be78

SHA1 0f04dad5194f97bb4f1808df19196b04b4aee1b8

SHA256 972e907a901a7716f3b8f9651eadd65a

0ce09bbc78a1ceacff6f52056af8e8f4

SHA512 cb61fc9c58d8ed1cf3a40fa676c1a1d685a09a920beca2b

577266ce17bdf9f7ee14927b5c33d4e23daf27d72f6ac32

ed4071570af88f83de39823acfb9785422

Contact contact@korrino.com

1

Contents

Contents .. 1

1 Executive summary ... 3

1.1 Purpose of the sample .. 3

1.2 Recommended further actions ... 3

1.3 Remaining issues ... 4

2 About the technical summary ... 4

2.1.1 Graphic models ... 5

2.1.2 Execution visualizations .. 7

2.1.3 Typographical conventions ... 8

3 Technical summary ... 8

3.1 Architecture overview ... 8

3.2 Objects definitions .. 9

3.3 Using architecture in operations .. 14

3.4 Operations overview ... 15

3.4.1 Dropping and executing library ... 15

3.4.2 Main thread in library ... 16

3.4.3 Thread thread_initial .. 16

3.4.4 Method engine_main::start_engines ... 17

3.4.5 Method communication::receive ... 18

3.4.6 Method cc_channel::receive_packet .. 19

3.4.7 Method engine_main::run_routine .. 20

3.4.8 Method engine_main::process_packet .. 21

3.4.9 Method engine_main::process_command ... 21

3.4.10 Method engine_main::process_results .. 22

3.4.11 Method engine_reporter::run_routine .. 22

3.4.12 Method engine_backdoor::run_routine ... 23

3.4.13 Method engine_backdoor::process_command .. 23

2

3.4.14 Method communication::report ... 24

3.4.15 Method cc_channel::report_data ... 24

4 Appendix A – Indicators of Compromise .. 25

4.1.1 IoC in filesystem .. 25

4.1.2 IoC in network communication patterns .. 26

4.1.3 Other IoC ... 27

5 Appendix B – list of enclosed analysis artifacts .. 27

3

1 Executive summary

The sample has been retrieved by a client from an infected node and submitted to Korrino for analysis.

In order to infer about earlier elements of attack vector (before the infection), additional analysis needs

to be performed (see: 1.2). Analysis has started 15.05.2017 and has been completed 30.05.2017.

1.1 Purpose of the sample

Upon completion of analysis of the sample the following conclusions have been made, based on detailed

results described in section 3:

1. Sample is a part of a larger malicious architecture. It performs relaying activity on victims

operating system. Other components of malicious architecture, e.g. keyloggers, info stealers,

etc.. can use this application for reporting to remote nodes.

2. Sample’s functionality includes screen grabbing. This makes information stealing scenario highly

probable.

3. There are no indicators of a particular class of data being targeted. Nonetheless, based on

conclusion that it’s only a part of a broader architecture, it is recommended to identify and

analyze other applications in architecture in order to make conclusions about targeted data

(see: 1.2).

4. The sample is a sophisticated malware. It’s designed as part of a modular solution. It uses

efficient, thread-based architecture. The code has been rated as of high quality. That suggests

that substantial investment has been made in order to build it. This in turn means that

suspicions about the actor behind this attack are moving towards state sponsored actors rather

than less capable actors.

5. Malicious architecture is highly configurable. Its capabilities might be easily expanded upon

download and installation of other modules.

1.2 Recommended further actions

Based on conclusions of this report, following actions are recommended (beginning with immediately

required actions):

1. In order to disrupt attacker communication with infected nodes, we recommend blocking

network communication patterns by administrators (based on Indicators of Compromise

enclosed in Appendix A – Indicators of C).

http://www.korrino.com/

4

2. In order to locate infections, gather evidence and sanitize compromised nodes we recommend

detecting infected machines by administrators and/or users (based on Indicators of Compromise

enclosed in Appendix A – Indicators of C), starting with high profile systems.

3. In order to retrieve remaining applications of malicious architecture we recommend performing

forensic analysis on infected machines. Forensic analysis should aim at retrieving more

suspicious artifacts and perform analysis on them if necessary.

4. In order to gain more actionable information regarding origin and purpose of malicious

application, we recommend performing analysis on identified loadable and executable artifacts.

5. In order to prepare for future attack vectors with highest risk levels, we recommend performing

threat modeling and risk analysis for selected highly valuable systems and assets.

6. In order to raise security level for attack scenarios with highest calculated risk, we recommend

to implement appropriate security controls based on results from recommendation 5.

1.3 Remaining issues

Sample contains one object that has very limited functionality. During C&C communication simulation

the analyst was unable to simulate commands from malicious actor (botmaster) that would enable any

functionality in this object. There is suspicion that most of this object’s functions were removed from

sample before its compilation and performing the attack.

2 About the technical summary

The technical summary of analysis is divided into two perspectives. The first is the architecture

overview, the most general overview of the application. The purpose of this perspective is to answer the

question: “How is this sample built?”

The second is operation overview. This part is focused on general functionality as well as individual

operations being performed by the sample and referenced back to parts of its architecture. The purpose

of this perspective is to answer the question: “How does this sample work?”

The process of reversing compiled sample’s functionality is very complex. In order to simplify presenting

its conclusions, graphical models are being used throughout this report. These models are based on ERD

notation and BPMN notation. However, various elements can be used slightly differently than in

everyday use of this notations. These differences are made for the sake of greater readability. For the

same reason parts of objects attributes, functions and methods that are employed at assembly level are

being omitted.

5

2.1.1 Graphic models

In order to visualize interpretations of selected constructions and operations, graphic representations

are provided. Two of most frequently used classes of these representations are: object models (used

mainly in 3.1) and operation models (used in 3.4). The building blocks of models are described in the

following table.

6

Object symbol Meaning

Represents relation one to many between two objects. In this case
one object object_1 is in relation one-to-many with object object_2
(e.g. object_1 contains list of object_2)

Represents complex operation pool. Subsequent suboperations are
being executed within it. In this report it is referred to as “operation”.

Represents simple operation. Simple operation is a representation of
a sequence of assembly instructions that constitute a single logical
entity.

Represents complex operation. Complex operation is described in
detail in another diagram in a separate operation pool with a
corresponding caption.

Represents system interaction. System interaction occurs when
described process is interacting with its environment (e.g. filesystem)
via library calls or system calls instead of performing instructions.

Represents operation’s starting point. In terms of machine language it
represents procedure prologue.

Represents operation’s stopping point. In terms of assembly language
it represents procedure epilogue.

Represents program’s termination point. It means that program being
described is terminating.

Represents sleeping point. It means that thread execution has been
suspended conditionally or unconditionally for a certain amount of
time.

Represents signaling point. It means that thread is performing
synchronization activities with another thread or another program,
e.g. sending a signal via Windows SetEvent syscall.

Represents communication point. It means that thread is performing
communication operations, such as recv function from ws2_32.dll
library.

Represents conditional exclusive gateway. It means that process
control flow can select one of two directions based on a condition
being met.

Represents conditional complex gateway. It means that process
control flow can select one of many directions based on a condition
being met.

Represents an important annotation for one of described process
elements, e.g. reference for analysis artifact.

Describes control being passed from one operation to another
subsequent one.

7

2.1.2 Execution visualizations

In order to investigate detailed program executions used to formulate general operations overview,

execution visualizations are provided.

Execution visualization can be viewed and edited with FreeMind software1 (available for free). It

contains hierarchical representation of a section of a sample’s recorded execution. Blue entries describe

called functions detected as library calls or identified internal calls of the sample. Black entries represent

unidentified calls. Red entries represent interesting (suspicious) calls.

Diagram 1: Example of execution visualisation

1 http://freemind.sourceforge.net/wiki/index.php/Main_Page

8

2.1.3 Typographical conventions

Italic font type is used when referencing object names, class names, methods, attributes, etc.

application’s programmatic constructs.

Objects methods and objects attributes are presented in C++-like object::method and object::attribute

convention.

3 Technical summary

3.1 Architecture overview

This diagram describes relations between objects used in samples operations. The objects are created

during initialization and afterwards they interact with each other to carry out parts of process they are

being responsible for.

Diagram 2: relations between engine_main and surrounding objects

engine_main is most important part of the samples internal architecture. It interacts with

communication object via configuration with receive and report methods. communication in order

9

perform C&C communication operations object uses data and methods provided by cc_channel object,

which describes particular C&C channel. engine_main also interacts with victim’s operating system

registry and filesystem using persistence object.

3.2 Objects definitions

The analyzed application consists of several classes (or types) of objects that interact with each other. In

order to understand their purpose and the way they interact with each other, their definitions are being

provided in this chapter.

BYTE type

This type represents value stored on 8 bits, i.e. between 0x0 and 0xff.

WORD type

This type represents value stored on 2 BYTEs, i.e. word for x86 and amd64 processors.

DWORD type

This type represents value stored on 4 BYTEs, i.e. double word for x86 and amd64 processors.

VTable type

This type represents pointer to virtual table of class. Classes inheriting from other classes or possessing

virtual methods contain this pointer. It can be used to identify and distinguish between some classes

and draw conclusions about relations between them.

WString

This class is used for storing and processing of UNICODE strings.

Vector<T>, Queue<T>, List<T>

This classes are used to store sets of <T> objects in a structured manner.

filesystem

Filesystem class is responsible for interacting with the victim’s operating system filesystem.

persistence

This class is responsible for providing persistence functionality, i.e. storing necessary data in registry and

filesystem. Persistence object contains filesystem object.

cryptography

This class is responsible for providing cryptographic and pseudorandom functionality. One of its most

heavily used functions are packet_2_command, which converts encrypted C&C packets into decrypted

commands and result_2_packet, which converts command results into encrypted packets, ready to be

reported via C&C.

10

packet

Packet represents structure containing unprocessed (before final decryption) data received by

communication class. In the process of decryption it is converted into command class (see below) with

cryptography object methods.

Offset Content Description

0x00 BYTE* text Packet contents as retrieved via
communication::receive

0x04 DWORD length Length of packet’s content in BYTEs

command

command represents decrypted data that is organized in a structure ready to be consumed by the

respective target engine. Its result can be transformed back into encrypted packet structure using

cryptography object methods.

Offset Content Description

0x00 DWORD engine_Id Id of an engine that this command is directed to

0x04 DWORD cmd_id Id of a command

0x08 BYTE* content Command content, interpretation varies among
commands

0x0c DWORD length Command content length, in BYTEs

cc_channel

cc_channel object represents one of possible communication channels. It provides methods for C&C

interaction (receiving data and reporting data) that are used by communication object.

Offset Content Description

0x00 vtable Table with virtual functions – netapi64.dll +0x2a6a0

0x08 Vector<WString> domain Vector containing WStrings with C&C domains

0x20 WString current_domain Currently used C&C domain

Method name Functionality

receive_data Tries to receive data from remote node

report_data Tries to report data to remote node

generate_uri Generates particular URL string used for an operation

configure_headers Configures headers for incoming HTTP request

encode Encodes data for transport

decode Decodes data from transport

11

communication

Communication object provides an interface for interacting with C&C infrastructure. Two main methods,

receive and report, are used by receiving (thread_receiving) and reporting (thread_reporting) threads,

described in subsequent parts of this report.

Offset Content Description

0x00 vtable Table with virtual functions – netapi64.dll +0x2a4c8

0x04 configuration* config Pointer to configuration object

0x08 Vector<cc_channel_*> channels Vector containing pointers to C&C channel
information

0x18 cc_channel* cur_channel Pointer to current C&C channel

0x1c Queue<packet*> packets Queue containing packets received via C&C
channel

Method name Functionality

receive Receives and enqueues packet from C&C channel

report Reads report data from report file and sends it over C&C channel

configuration

configuration is a part of engine_main, core application’s object that supervises operations performed

by remaining engines (also called: subengines). It interacts with communication object, cryptography

engine, persistence object.

Offset Content Description

0x00 Vtable Table with virtual functions – netapi64.dll +0x2a54c

0x04 communication* comm Pointer to communication object

0x08 cryptography* crypto Pointer to cryptographic engine object

0x0c persistence* persistence Pointer to registry key object

0x20 Vector<engine_*> engines Vector containing pointers to all registered engines

0x30 Vector<DWORD> codes Verb codes

0x40 BYTE engines_count Registered subengine count

Method name Functionality

read_report_file Reads content of report file in order to send it via C&C channel

12

engine_main

The most important object class is engine_main. Its responsible for supervising other objects and all

engines that perform operations.

It is one of four engines that are being constructed during the sample’s execution. It inherits from

abstract class engine_. Its identification DWORD is 0x3033. Its vtable starts at netapi64.dll+0x2a568.

Offset Content Description

0x00 vtable Table with virtual functions – netapi64.dll +0x2a568

0x04 DWORD engine_id Main engine identification DWORD is 0x3033

0x08 configuration my_config Engine_main contains Configuration object

Method name Functionality

run_routine Each engine has this method. It is responsible for running a
separate thread which performs operations specific to this engine.
The functionality of engine_main::run_routine is described in
operations overview section.

process_command Each engine has this method. It is responsible for processing
commands directed to it. The list of engine_main commands is
described in operations overview section.

process_packet Converts packet into command and relays it into target engine

fetch_packet Fetches packet from received packets queue

engine_count Contains current count of registered engines

process_result Each engine has this method which is responsible for generating
output of last processed command. The process of producing
engine_main’s output is described in operations overview section.

start_engines This method is responsible for starting (creating threads) for all
engines registered in Configuration my_config.

engine_reporter

engine_reporter is an object responsible for collecting data from other components of malicious

application, reformatting them and preparing for submission via C&C channel.

It inherits from abstract class engine_. Its identification is 0x2103. It’s vtable starts at

netapi64.dll+0x2a64c.

Offset Content Description

0x00 vtable Table with virtual functions – netapi64.dll +0x2a64c

0x04 DWORD engine_id Main engine identification DWORD is 0x2103

13

Method name Functionality

run_routine Each engine has this method. It is responsible for running a
separate thread which performs operations specific to this engine.
The functionality of engine_reporter::run_routine is described in
operations overview section.

process_command Each engine has this method. It is responsible for processing
commands directed to it. The list of engine_reporter commands is
described in operations overview section.

produce_result Each engine has this method which is responsible for generating
output of last processed command. The process of producing
engine_reporter’s output is described in operations overview
section.

append_data Reformats data submitted via mailslot and enlists it for further
processing for engine_main

report Reformats data submitted from other engines and enlists it for
further processing for engine_main

engine_backdoor

engine_backdoor provides backdoor functionality for application. It can create new processes of

cmd.exe and pipes that are used to communicate with it. Using engine_backdoor, botmaster is able to

execute any command that is understood by the system interpreter (cmd.exe).

It is one of four engines that will be constructed. It inherits from abstract class engine_. Its identification

is 0x2106. It’s vtable starts at netapi64.dll+0x2a680.

Offset Content Description

0x00 vtable Table with virtual functions – netapi64.dll +0x2a680

0x04 DWORD engine_id Main engine identification DWORD is 0x2106

Method name Functionality

run_routine Each engine has this method. It is responsible for running a
separate thread which performs operations specific to this engine.
The functionality of engine_backdoor::run_routine is described in
operations overview section.

process_command Each engine has this method. It is responsible for processing
commands directed to it. The list of engine_backdoor commands is
described in operations overview section.

produce_result Each engine has this method which is responsible for generating
output of last processed command. The process of producing
engine_reporter’s output is described in operations overview
section.

14

3.3 Using architecture in operations

This section describes the most probable role of sample in its malicious environment. It shows

interactions between source sample (sample.exe), netapi64.dll library, C&C channel, report files,

external executables (e.g. cmd.exe), reporting mailslot and other presumed components that are

working in cooperation with main sample (e.g. sample_2.exe, sample_3.exe, sample_4.exe).

Diagram 3: Malicious architecture and its operations

netapi64.dll component communicates with C&C infrastructure via HTTPS protocol. It receives packets

of data (2) that are decrypted and converted into commands and distributed internally (3).

These can be used to configure and adjust internal components as well as interact with external

programs with engine_backdoor (4).

Another use case for the malicious architecture is other components reporting data to mailslot created

by engine_reporter (5).

15

These presumed components may be e.g. info stealers injected into web browsers or specialized

software used to interact with particular interfaces (e.g. SCADA systems). Reported data is stored in the

report file (6). And is included into the main report and sent to remote C&C infrastructure (7).

3.4 Operations overview

This report does not include operations performed prior to executing sample on victim’s machine. In

order to investigate such operations, additional evidence needs to be collected for analysis.

Upon it’s execution, sample performs direct attempt to drop another loadable module (netapi64.dll) by

extracting it from its .data section and execute it. No additional protectors are employed in this process.

After that, rundll32.exe is being used for executing dropped modules code. Netapi64.dll begins

operation by verifying if the system is already infected and in case it’s not - spawning several operating

threads.

In spawned threads, particular objects carry out their operations, which include communicating with

C&C, processing commands and their results, servicing backdoor, reconfiguration, registering and

executing additional modules and relaying submitted data to C&C infrastructure.

3.4.1 Dropping and executing library

After execution start, sample executable is writing part of its .data section into file pointed by:

C:\%ALLUSERPROFILE%\netapi64.dll, which in our analysis environment corresponds to:

C:\ProgramData\netapi64.dll.

Diagram 4: entry point od analyzed sample

After successfully dropping the library into the filesystem, the main sample attempts to execute it using

ShellExecuteW library call in conjunction with rundll32.exe application. The library entry being called is

named: open.

16

3.4.2 Main thread in library

The first thing that the malicious code executed in netapi64.dll does is to verify if the installation has

been completed on host operating system. It attempts to open mutex with defined name (Appendix A –

Indicators of C). If mutex is successfully opened, main thread interprets it as sign of application being

already started and exits.

Diagram 5: netapi64.dll entry point

If the mutex could not be opened, main thread creates thread thread_initial, which is responsible for

bootstrapping and running malicious application.

Afterwards the main thread proceeds to execute the GUI message dispatching loop. This loop is a

construction typical to legitimate GUI applications. It is responsible for handling interactions from user,

such as moving the window around or clicking over GUI controls. In most cases such applications register

their own custom functions for handling GUI messages.

Since no actual window has been presented to user in this case and no custom handling function has

been registered, it is assumed that the purpose of this construction is to legitimize malicious code. Some

automatic analysis tools might lower malicious score based on such construction being present in

application.

3.4.3 Thread thread_initial

Thread thread_initial is responsible for constructing main application objects and creating threads for

subengines that are servicing application processes.

It starts by creating the major supervisor of all application processes, that is engine_main object. It also

constructs its necessary attributes, among them: communication, an object responsible for handling

17

C&C communication processes, cc_channel, describing current C&C channel configuration and

configuration, which is responsible for maintaining application configuration.

Afterwards it proceeds to construct subengines that will be employed to service various tasks required

by the operations. These are: engine_reporter, responsible for collecting partial reports submitted to

application’s mailslot and engine_backdoor, which provides backdoor functionality.

All of the engines are registered within engine_main on a special list. It uses it to properly distribute

commands received from C&C channel among subengines and collect results of executing these

commands.

All of them have their servicing routine called run_routine that is used in creation of servicing threads.

All of them have the method process_command used for processing commands after particular engine

receives them from engine_main.

Diagram 6: Initial thread is started

After registering necessary subengines, thread_initial calls method engine_main::start_engines. This

method does not return as long as application is operating. When it finishes, initial thread performs

cleaning activities (such as freeing memory) and exits.

3.4.4 Method engine_main::start_engines

The first thing that method engine_main::start_engines does is creating a mutex that will signal to other

components of malicious architecture that the application is up and running.

This method also starts two threads servicing C&C communication, namely thread_receiving and

thread_reporting, the first responsible for receiving and decoding incoming packets, the latter

responsible for sending reports to remote C&C nodes.

18

Diagram 7: engine_main is starting engines

Afterwards, it proceeds to create threads for each of the registered engines run_routine methods.

After completing thread creation, engine_main::start_engines waits for signal that operations are

finished. If such signal is received, it returns.

3.4.5 Method communication::receive

The communication::receive method runs in a dedicated thread. It is responsible for retrieving data from

C&C infrastructure, decrypting it and creating a packet structure. packet contains two attributes:

decoded data and its length. It will be converted into command class at later time by engine_main.

19

Diagram 8: Receiving loop

3.4.6 Method cc_channel::receive_packet

Receiving routine is relying on WinInet library functions for setting up secure connection with remote

node and receiving data. Upon successful retrieval, the data is being verified for consistency and

decrypted.

Diagram 9: Receiving procedure

20

After receiving data and creating a packet structure, it’s inserted into engine_main’s packet queue for

further processing.

3.4.7 Method engine_main::run_routine

engine_main’s run_routine method is responsible for two important things. The first one being fetching

packets received via C&C channel from queue (engine_main::fetch_packet) and processing them

(engine_main::process_packet). The second one being collecting results from Commands processed by

other subengines registered within engine_main and storing them in results file. These operations are

the core of the whole module based processing of the sample.

Diagram 10: Main execution loop of engine_main

21

3.4.8 Method engine_main::process_packet

Processing of packet is divided into two stages. In the first stage, engine_main uses cryptography

methods to decrypt packet and convert it into command object. In second stage, command’s target

engine_id value is being inspected and compared to all engines registered within engine_main. After

identifying target subengine, command is inserted into this subengines command list for further

processing.

Diagram 11: Packet processing by engine_main

3.4.9 Method engine_main::process_command

The following table describes functions performed by engine_main upon receiving specific command.

Command id Function

CMD_EM_GET_CONFIG Send current configuration to C&C, including current C&C
domains and registered engines ids.

CMD_EM_GET_ENG_IDS Send registered engines ids to C&C

CMD_EM_SET_CC_INT Set the interval between attempts to receive packet from
C&C

CMD_EM_SAVE_CONFIG Save configuration to configuration file

CMD_EM_CHANGE_CHANNEL Change active cc_channel

CMD_EM_REGISTER_ENGINE Load and register new engine within engine_main

CMD_EM_UNREGISTER_ENGINE Unregister engine from engine_main

CMD_EM_REGISTER_CC Register new cc_channel

CMD_EM_UNREGISTER_CC Unregister selected cc_channel

CMD_EM_RUN_UNINSTALL Uninstall application

22

3.4.10 Method engine_main::process_results

engine_main::run_routine periodically inspects all registered subengines for results of processed

commands. If it encounters output being ready to report in one of subengines, it converts it into packet

structure (i.e. encrypts and serializes it) and writes it into report file using persistence object.

Diagram 12: Processing results by engine_main

3.4.11 Method engine_reporter::run_routine

The engine_reporter::run_routine is responsible for handling data submitted to applications mailslot by

other elements of malicious architecture in the system. It creates a mailslot with defined name (can be

found in Appendix A – Indicators of C) and afterwards it performs periodical checks for new data

submitted to it. If it encounters new data it compares it to string “SCREEN”. In case it matches, a

screenshot is created using GDIPlus.dll functions. In other cases data is handled as simple text.

In both cases submitted data is properly reformatted and inserted into queue for collecting by

engine_main::process_results. After sufficient amount of data is collected, a report file will be submitted

to malicious actors via C&C channel via communication::report (see:).

23

Diagram 13: Main execution loop of engine_reporter

Data can also be reported by other subengines to engine_reporter internally via engine_reporter::report

method.

3.4.12 Method engine_backdoor::run_routine

Upon execution, engine_backdoor::run_routine calls Sleep function and does not perform any other

operations. All functionality of this subengine is performed by process_command method.

3.4.13 Method engine_backdoor::process_command

The following table describes functions performed by engine_backdoor upon receiving specific

command.

24

Command id Function

CMD_EB_START(0x0) Starting external program – system interpreter (cmd.exe) with
connected input and output pipes

CMD_EB_STOP(0x1) Stopping external program – interpreter

CMD_EB_EXECUTE(0x2) Subsequent interpreter instructions submitted by CMD_EB_EXECUTE
will be relayed to interpreter via input pipe and results will be
retrieved via output pipe. All results will be reported to
engine_reporter

CMD_EB_GET_STATE(0x3) Reports state of engine_backdoor – STARTED or STOPED (sic)

3.4.14 Method communication::report

After sufficient amount of data has been collected in report file, communication::report thread will

attempt to report its content to remote C&C node using cc_channel::report_data method.

Diagram 14: Reporting loop

3.4.15 Method cc_channel::report_data

Reporting routine is relying on WinInet library functions for setting up secure connection with remote

node and sending data. This routine is very similar to receiving routine.

25

Diagram 15: Reporting procedure

4 Appendix A – Indicators of Compromise

Indicators of Compromise presented below can be used to determine if particular system was

compromised or if particular network segment contains compromised hosts. Label <%random%> means

that part of an object property has been randomly generated.

4.1.1 IoC in filesystem

File Sample.exe (submitted for analysis)

Name Unknown

Location Unknown

Size 275456

MD5 8b6d824619e993f74973eedfaf18be78

SHA1 0f04dad5194f97bb4f1808df19196b04b4aee1b8

SHA256 972e907a901a7716f3b8f9651eadd65a

0ce09bbc78a1ceacff6f52056af8e8f4

SHA512 cb61fc9c58d8ed1cf3a40fa676c1a1d685a09a920beca2b577266ce17bdf9

f7ee14927b5c33d4e23daf27d72f6ac32ed4071570af88f83de39823acfb9

785422

26

Artifact Dropped library

Name netapi64.dll

Location %ALLUSERPROFILE% (e.g. C:\ProgramData\)

Size 233984

MD5 59c01073d4dd18baa5f0cc00b62e6524

SHA1 a06b8bb4ebeffce36c062d1948ee4ed2042e8852

SHA256 7102b96bce8db14ebb18d6c47261f080

1315730ba24c86237efb4fbfc555ad4c

SHA512 c3188d39ed293a59dbcb7d529060385128f97c88883622c6741527c4d434f

51bb531000dacb4019e16b9c80bf6bf15a2ce79dca60df836ca5a465e84d9

783567

Artifact Reporting file

Name hi<%random%>.tmp

Location <%DEFAULTUSERPROFILE%>\AppData\Roaming\

Size Unknown

MD5 Unknown

SHA1 Unknown

SHA256 Unknown

SHA512 Unknown

Artifact Configuration file

Name co<%random%>.tmp

Location <%DEFAULTUSERPROFILE%>\AppData\Roaming\

Size Unknown

MD5 Unknown

SHA1 Unknown

SHA256 Unknown

SHA512 Unknown

Artifact Registry key for configuration

Name {899903DD-E913-412C-ADC8-63A405AF0E77}

Location <HKEY_USERS>\<%random%>\Software\Microsoft\MediaPlayer\

4.1.2 IoC in network communication patterns

Artifact C&C domain

Status INACTIVE

Pattern microsoftsupp.com

Owner on date of analysis Unknown

URI https://microsoftsupp.com/*

27

Fast-flux No

IP resolved on date of analysis Irrelevant (blocked)

IP CC Irrelevant (blocked)

Artifact C&C domain

Status INACTIVE

Pattern inteldrv64.com

Owner on date of analysis Unknown

URI https://inteldrv64.com/*

Fast-flux No

IP resolved on date of analysis Irrelevant (blocked)

IP CC Irrelevant (blocked)

4.1.3 Other IoC

Artifact Activation mutex

Name 9bfc46eb-e42b-47ab-9c9f-00de3e533fef

Artifact Reporting mailslot for engine_reporter

Name \\.\mailslot\95ca3a2a-6503-49da-9fe4-21bce3e6dc8

5 Appendix B – list of enclosed analysis artifacts
Enclosed in this report are execution visualizations.

1. ev_main_thread.mm – execution visualization of netapi64.dll’s main thread

2. ev_thread_initial.mm – execution visualization of netapi64.dll’s thread thread_initial

3. ev_thread_receiving.mm – execution visualization of netapi64.dll’s main thread_receiving

4. ev_er_run_routine.mm – execution visualization of netapi64.dll’s main

engine_reporter::run_routine

